SUJET 8: BAC 2002 TSM

MATHEMATIQUE

- I) Soit **ABCD** un losange de centre O avec **OB=2OA**
- a-) Déterminer l'ensemble des points tels que :

$$MA^2+MC^2-2MD^2=-6OA^2$$

- II) On considère la fonction f définie par : $f(x)=|x^2-1|$
- a-) Etudier le sens de variation de la fonction f.
- b-) On désigne par (C) la représentation graphique de f dans le plan muni d'un repère orthonormé $(0, \vec{t},$
- \vec{j}). Montrer que (C) admet un axe symétrie.
- c-) Démontrer que pour tout réel \mathbf{x} de $D_{\mathbf{f}}$, $f(\mathbf{x})=2\ln|\mathbf{x}|+\ln|\mathbf{1}-\frac{1}{x^2}|$ et calculer $\lim_{x\to+\infty}(\frac{f(x)}{x})$

Donner une interprétation graphique de cette limite

d-) Construire (C).

III-On pose :
$$U_n = \int_{n\pi}^{(n+1)\pi} e^{-x} \sin x dx$$
, $n \in N$

- a-) Calculer U_n à l'aide d'une intégration par parties.
- b-) Montrer que la suite $(Un)_{n\in\mathbb{N}}$ est géométrique. Indiquer le premier terme et la raison.
- c-) On note $S_n=U_1+U_2+\cdots+U_n$. Calculer S_n et sa limite quand n tend vers $+\infty$